
Education and Information Technologies 5:2 (2000): 103±117

2000 Kluwer Academic Publishers, Manufactured in The Netherlands

DEVELOPING EDUCATIONAL SOFTWARE: A
PROFESSIONAL TOOL PERSPECTIVE

ENRIQUE HINOSTROZA AND LUCIO E. REHBEIN

Instituto de' InformaÂtica Educativa, Universidad de La Frontera, P.O. Box 380, Temuco, Chile

E-mail: ehinost@iie.ufro.cl ; lrehbein@iie.ufro.cl

HARVEY MELLAR AND CHRISTINA PRESTON

Science and Technology, Institute of Education, University of London, 20 Bedford Way, London, WC1H OAL, UK

Email: hgm@ioe.ac.uk ; temsccp@ioe.ac.uk

The selection, and use of educational software and its impact in schools are still controversial issues. In this paper

we present an alternative conceptualisation of educational software based on considering the software as an

instrument for teachers' professional performance. We review previous work in the areas of the design,

development and evaluation of educational software and of the process of educational innovation. The review

of these four areas converges to demonstrate the need for knowing and considering the context of use of

educational software and for understanding users' perspectives about its roles and possibilities and hence supports

a perspective on educational software which sees it as a professional tool for teachers' performance of their

teaching role.

Keywords: educational software, pedagogy, evaluation, professional tool, cognitive tool.

Introduction

The use of educational software in schools is still an arena for debate and controversy.

There is the software development industry with its growing market of new multimedia

products (Broderbund, Microsoft Corp., TAG Development, The Learning Company, Tom

Snyder Productions, Unlimited, ZETA Multimedia, etc.)1. On the consumers' side, there is

evidence that the role of information technology in schools is controversial (Lowther and

Sullivan, 1994) or at least that its effects are not conclusive (Johnson et al., 1994), and that

software products that are most frequently used in school are based on drill and practice

activities (Evans-Andris 1995; Cuban 1997). Then there are research groups producing a

growing number of reports focusing on the teaching and learning processes using

particular pieces of software (diSessa et al., 1995; Laborde 1995; Mellar et al., 1994;

Schwartz et al., 1993; Soloway and Pryor 1996).

These three groups use and offer different software products and have very different

views as to how to assess their value.

In this paper we analyse this apparent dissociation, presenting evidence and ideas that

might help to identify the root of the problem. The life cycle of a piece of software is

reviewed, that is, from its design and development, up to its use, evaluation and insertion in

schools as an educational resource.

We wish to argue in favour of the need for research into the concept of educational

software from a situated perspective, and in particular for research into teachers' under-

standing of the role of educational software and their concepts about it. This argument

leads us to wish to emphasise a perspective on educational software which sees it as a

professional tool for the teacher's performance of their teaching role.

Educational software design

In this review we will analyse the design of educational software from the perspective of

the intentions of the author, that is from the underlying teaching and learning principles

that can be found in the software. Accepting the dif®culty of knowing the `real' intentions

of the author, we will focus on the explicit elements of the design and because these

elements have been largely captured by the different classi®cation methods proposed in the

literature, we start by looking at educational software classi®cations.

`Learning with Software' (Open Learning Technology Corporation 1995) presents an

overview of these systems of software classi®cation. We simply present here the

organisation given in that paper with some additional references of our own (text directly

quoted from the web site is indicated by quotation marks).

� By subject: `̀ Essentially this system provides for classi®cation of software by school

subjects. For example, all those software programs that can be applied to, say, Social

Studies.''

� By type (i.e. the functionality built in to the software): The categories de®ned under this

type of classi®cation are, for example. Tutor, Tool and Tutee (Taylor 1980). Another

approach to classi®cation of software ®tting into this category is given by Chandler

(1984) using the labels: Tutorial, Games, Simulation games, Experimental simulation,

Content free tools, and Programming languages.

� By educational paradigm (i.e. the learning paradigm that is embedded in the software):

One such classi®cation comprises four paradigms: Instructional, Revelatory, Conjec-

tural, and Emancipatory (Kemmis et al., 1977). Another classi®cation in this group is

that proposed by Laurillard (1993). Starting from a de®nition of the learning process,

she de®nes the categories Discursive, Adaptive, Interactive and Re¯exive.

� By use (i.e. the teaching strategy that could be triggered by the software or is embedded

in the software design): `̀ Fatouros et al., (1994) offer a classi®cation of computer aided

learning based on the key domains or learning areas that teachers plan for young

children to explore (i.e. images, sounds, text, stories and ideas, facts and ®gures,

consequence).'' This kind of classi®cation was also used by Watson (1993), who

focused on the `Educational Activity' that is supported by the software. He proposes the

categories Information Gathering, Analysis and Evaluation, and Presentation.

� By impulses to learn: This category is based on a taxonomy proposed by Bruce (1996),

who uses the ways in which educational resources support integrated, inquiry-based

learning as a classi®cation key. He de®nes four broad categories: enquiry, communica-

tion, construction, expression

104 HINOSTROZA ET AL

Each of these classi®cations serves a particular purpose of analysis and comparison. For

example if the aim is to build a library of software to be consulted by teachers, the subject

classi®cation could be used; if the aim is to compare the effects of software on students'

performance, then the educational paradigm could be used. But in examining these

classi®cations, we can see that none of them is based on the implications of the design for

what a teacher would do with the software in the classroom.

Educational software development

In order to analyse the process of software development, we present a brief look at the

general issues of software engineering and the methods proposed in this area, and then

present some reported examples of the software development process.

Software Engineering

The concept of the software life cycle (Sommerville 1989) structures the stages of software

development. Based on this model there have been several propositions, including the

waterfall model and the revised waterfall model. Other models propose a sequence of

stages that allow the developers to reduce the risk involved in the development by

introducing reiterative tests of a prototype, which evolves within the project. Prototypes

allow developers to acquire information about the requirements, technical feasibility, and

other risk elements, but this method isn't well integrated with the end product because of

its partial and ill integrated step by step development. Boehm (1988) proposed a new

approach to this development method, which has been named the spiral model. It

integrates the waterfall model with the evolution of prototypes.

Despite the variety of different methods or techniques used for software development, it

is still dif®cult to produce a piece of software. Winograd (1995) argues that one of the key

differences between software and most other kinds of artifacts that people design is the

freedom of the designer to produce a world of objects, properties, and actions that exist

entirely within the created domain. This special condition of software products makes it

very dif®cult to share the idea of the product to be developed, because the artifact belongs

to the author and it is not possible to apprehend it in the computer, merely to realise it

through every attempt to use it.

Misunderstandings between software designers and software users are well known.

Colin Potts (1993) in his article `Software Engineering Research Revisited' suggests that

an emerging trend exists today towards using industry as the laboratory for discovering

new techniques of developing software, and that this tendency emphasises the relevance of

an empirical de®nition of the problems, the study of actual cases and their contextual

aspects. Hughes et al., (1995) in arguing for a role for ethnography in software

development, claim that it is vital for designers to understand the work setting as a

socially organised entity prior to initiating the design stage.

DEVELOPING EDUCATIONAL SOFTWARE 105

Development of educational software

There are two main approaches taken by different educational software design teams to

explicitly, or implicitly, tackle the problem of context. The ®rst is transferring the software

design responsibility to the teacher, and the second is to incorporate teachers as part of the

design team.

The ®rst approach means that teachers, by themselves, design a piece of software that

they ®nd to be useful for their activities (cf. Fitzgerald et al., 1992). This has been tried in

different empirical situations but the essential problem here is that the highly specialised

technical knowledge required (software engineering, programming methods and techni-

ques, human computer interface design, etc.) to produce a professional piece of software is

beyond the normal training of teachers (and other professionals as well). Software

produced in this way can be very useful in bounded situations, but is certainly not

satisfactory in general, either for external evaluators or for teachers themselves (Hoyles et

al., 1991).

The second approach entails the involvement of one or more teachers in the software

development process with de®ned roles and activities. In Char and Hawkins' (1986) report

teachers were part of the design process, advisors on curriculum issues and evaluators in

different stages of the software development process. Hawkins and Kurland (1986)

describe an example of requirement speci®cation for the design of information-managing

tools in the schools. In both projects, although there was a prior conception of the piece of

software to be developed, there was no stage of `requirements speci®cation' in order to

analyse what was really needed in the school(s).

There are a few good examples of approaches to the use of technology in education

based on requirements analysis, one in particular is McConnell's course design (McCon-

nell 1994), which starts with an analysis of co-operation and learning. From this he designs

strategies for using the technology to support the different ways of implementing computer

supported collaborative learning.

However, there seems to be little experience of development of software based on an

analysis of the needs and activities found in the schools or in the classrooms. Almost all

the examples of software development reviewed were based on a preconceived idea of

what kind of software should be developed and teachers and students were incorporated

into the process after this initial de®nition or conception.

Software evaluation

For the purposes of this paper we will understand software evaluation as a formal

procedure that helps someone else to build up a judgement about the software, in the

sense of its effectiveness in the areas or activities for which it has been designed or is been

used. For the moment we will exclude the process of selection and review of software

described by Squires and McDougall (1994) and Winship (1989). We classify the different

evaluation techniques into three groups:

106 HINOSTROZA ET AL

� Experimental methods: In this approach the experimental method of pre and post tests

using experimental and control groups is used in order to assess the effectiveness of a

piece of software. Examples of these methods are found in reports by Reiser and Dick

(1990) and Zahner et al., (1992), in which they propose a speci®c method of performing

an experiment to evaluate software.

� Check-list approach: This group of methods is based on applying a set of predeter-

mined criteria to a piece of software. Examples of such methods are found in Tolhurst's

(1992) study, and Squires and McDougall (1994) provide an extensive review of the

different options.

� Qualitative evaluation: Some evaluators argue for the evaluation of the software in a

situated context and propose the application of qualitative methods to evaluate software.

Examples of this are given by Crook (1991), who changes the focus of analysis of

software from the interaction with the computer to the interaction around the computer,

and Squires and McDougall (1994), who propose a method of analysis of software

based on three interaction paradigms: teacher-student, teacher-designer and student-

designer.

One of the main problems of software evaluation is the nature of software itself, in that it

is not readily accessible. Unlike a book or other teaching material it is not accessible to

inspection, by skimming, scanning, browsing, etc. It must be run and explored on the

computer and the teacher will need a certain expertise to be able to do this (Squires and

McDougall 1994). Winograd (1995) describes the particularity of software design as the

creation of an independent artifact that exists and has sense in a de®ned domain. In a

similar vein Olson (1988) de®nes software as `ideaware'. Crook (1991 and 1994)

concentrates on the concept of interaction between users (students and teacher), de®ning

a social context in which this interaction occurs.

So, in order to evaluate a piece of software, we argue that it is not possible to assess it as

an isolated element, rather it needs to be evaluated in a speci®c social context and set of

circumstances.

Educational innovation

It is commonly argued that computers and telecommunications are key tools that permit

(and eventually produce) the change (innovation) from the traditional bureaucratic culture

of organisations to a new professional culture. Moreover, in many cases the justi®cation for

investing in information technology is based on the need to innovate in several areas or

dimensions, rather than in the need for the technology itself. In fact, speaking about the

rationale for innovation in schools, Grunberg and Summers (1992), rephrasing Fullan

(1982), say: `̀ schools tend voluntarily to adopt innovations which promote their image as

up-to-date and ef®cient'' (p. 259). Therefore, besides ef®ciency, effectiveness, and other

considerations, computers are often seen as innovation `symbols' or `signs' and once

introduced, act as catalysts in the process of change (Hawkins et al., 1990).

DEVELOPING EDUCATIONAL SOFTWARE 107

Computers produce a wide range of effects in an organisation and much has been

written about the different levels on which they impact. One interesting speci®c effect of

computers in schools is reported by Olson (1988), who identi®es two different ways in

which teachers use the computer:

� Expression tool: The computer is an instrument to express how they want themselves to

be seen as teachers.

� Trojan horse: The computer is used as an aid to innovate in the teaching strategy.

These ways of using the computer were not perceived by the teachers themselves, but

were revealed by the process of analysis and interpretation that the researcher applied to

his observations of their work with computers. In both cases it is possible to ask whether

this is a computer driven or a computer supported process. In the former, technology plays

the role of catalyst, and in the latter it is a support for the ongoing process of change.

This view of the role of technology is coherent with that of Winograd and Flores (1986),

who argue that when a change is made, the most signi®cant innovation is the modi®cation

of the conversation structure, not the mechanical means by which the conversation is

carried out. This focuses the ideas of change not on the technology but on the relation or

activities that are carried out with the technology, in this case, teaching and learning.

Placing technology in a supportive role implies ®rst, understanding the on-going process

of change and second, choosing an appropriate technology. This view is coherent with the

re¯exive concept of change described by Olson (1988), who de®nes teacher behaviour as

re¯ecting on action, research activity as understanding teacher intentions and innovation

activity as engaging in critical analysis of practice.

These ideas are in-®tting with the overall picture presented in previous sections, they

shift the focus of innovation away from the technology and closer to the context and

actions, that is to a situated perspective on change.

Three conceptions of educational software

The previous sections have demonstrated the need for considering a more speci®c

perspective of software design, development, evaluation and introduction. Starting from

these arguments, we present some alternative conceptions of educational software.

Cognitive tools: learning centred software design

In this perspective software design and development is viewed as an activity whose goal is

to produce a tool that is expected to have an effect at a cognitive level. The design may

well be grounded in some learning theory which gives the framework for the software

design (the requirements). These theories include behaviourism, constructivism, and

others, all of which have a clear element of self-determined learning and therefore share

common assumptions in their design. Some software of this kind does incorporate

108 HINOSTROZA ET AL

elements of a teaching strategy, but these are embedded in a learning framework which is

explicit in the software. From the designer's or developer's perspective, the arena of

learning is in the interaction of the student with the computer. Software of this kind can be

represented by Figure 1.

Reusser (1993) has software of this type in mind when he describes educational

software:

`̀ computer environments should be seen as mind-extending or catalysing tools for

intelligent and volitional learners and virtually autonomous problem solvers. They

should provide stimulating and facilitating structures in order to promote meaning

construction activities, such as planning, representation and re¯ection'' (p. 146)

Another example of this sort of design is given by Laurillard (1990), who describes two

models for teaching and learning: the didactic model and communication model. In the

former she speaks about a `preceptual knowledge' that is transmitted by the teacher to the

student. In the latter she describes knowledge as a `negotiable commodity' between teacher

and pupil. Based on the latter model she speci®es the following software requirements:

� the student should have direct access to the object domain

� the software should have operational knowledge of the domain

� the software should be able to give intrinsic feedback

� the software should make the goals of the exercise explicit.

As in the previous de®nition, these speci®cations exclude the teacher from the learning

process, which is not actually the case for all the software included in this group.

Figure 1. The use of learning centered software

DEVELOPING EDUCATIONAL SOFTWARE 109

Although it is clear that the majority of the actual educational software available today

could be classi®ed in this category, from our perspective a possible disadvantage of this

kind of software is that the assumptions made during the design may be well grounded in

learning theories, but there is an assumption that the computer will be used in a speci®c

way. This assumption demands that the teachers act in a particular way in order to create

the situation in which the student can interact with the software in the manner intended by

the designer in order that learning may take place.

One might argue that this type of educational software should be evaluated considering

learning gains only and without necessarily including the context in which it would be

used, in that the context and strategy are determined by the software. This would mean that

we would then classify the interactions around the computer (Crook 1994) as side effects,

in that they were not intentionally designed.

From an innovation perspective, this type of software could be seen as a Trojan horse,

carrying new learning methods and thereby challenging the classroom routines. The

underlying assumption is that teachers will use the software instead of continuing with

what they are currently doing, because the learning theories embedded in the software are

claimed to be better.

Professional tools for teaching: teaching centred software design

This perspective on software design and development has its origins in particular teaching

methods, that is it has been conceived as an organisational aid for the teacher in the

classroom. The essential difference between this conception of educational software and

the previous one, is that the software design has explicit assumptions about how to use the

computer in the classroom.

This alternative way of designing educational software integrates the computer into a

certain teaching strategy, giving the teacher a special role in the activities. This role is

made explicit in the design of the software and is based on a study of teachers' software

requirements to help their teaching. The locus of learning is in the classroom activity, not

in the student's interaction with the computer, in fact the software may even be designed in

such a way that the student does not need to use the software. Software in this group can be

seen in Figure 2.

Fraser et al., (1991) describe the different classroom roles that the teacher, pupil, or

computer adopt when software is used in a classroom situation. The different roles

described are (p. 212):

� Manager (tactical), corrector, marker, computer operator.

� Task Setter, questioner, example setter, strategy setter.

� Explainer, demonstrator, scene setter, image builder, focuser, imitator, rule giver, coach.

� Counsellor, adviser, helper, devil's advocate, encourager, stimulator, listener=supporter,

observer, receiver, diagnostician, problem solver.

� Fellow pupil, rule applier, hypothesizer, problem solver.

� Resource, system to explore, giver of information.

110 HINOSTROZA ET AL

These roles re¯ect the behaviour of the teacher and=or students while using a piece of

software in a classroom lesson, and they could form a useful starting point for thinking

about teaching centered software design. Another example of this kind of approach is

reported by Dockterman's (1991) description of producing software to be used in a one-

computer classroom situation.

Mercer (1993), describing the implications of the context in learning, writes:

`̀ 1 It implies that the process of learning about, or through, computers is not primarily

to do with the relationship between a learner=user and the machine±the `interface'±or

even the software being used. It is instead very much to do with the contextual

framework within which the learner=user is doing things with the computer. . . .

2 It implies that what is learnt by particular children through the use of computers may

only be understandable in terms of the history of the teaching-and-learning relationship

in which that learning took place. . . .''
(pp. 31±32)

With this de®nition, Mercer changes the focus of the software design from the student-

machine interaction to the context of use. But he still continues to foreground the

Figure 2. The use of teaching centered software

DEVELOPING EDUCATIONAL SOFTWARE 111

interaction between the student and the computer, which is not necessarily required in our

description of teaching centered software design.

Further support for the idea that much educational software has a role in the whole

classroom situation rather than in the individual-computer interaction, can be found in the

work of Olson (1988), who identi®es a role for the computer, other than being directly

related to a speci®c teaching activity, in supporting the professional performance of the

teacher.

These ®ndings show different roles of the computer as a teaching resource, in the sense

that it provides teachers with an aid in performing their job. In this case the aid is not

directly related to the speci®c teaching activity, but to the professional performance of the

teacher.

This notion of educational software emphasises the teacher-designer perspective of

software evaluation (Squires and McDougall 1994), whilst focusing the object of the

software design on what the teacher is able to do with it. In other words, the software

would be judged to be successful if teachers could use it as an aid to do better the tasks that

they already perform, rather than imposing changes to existing practices. The change or

innovation process would be decided by the teacher and supported by the software.

This conception of educational software design suggests that designers should review

work on the teachers' professional knowledge (Eraut 1994, Grossman 1995) and their

expertise (Berliner 1995, Marton 1994) in order to understand better what teachers need to

perform their job (professional requirements), and also to review classroom management

issues (Jones 1996) to understand other factors (from the environment) in¯uencing its use

(Sandholtz et al., 1997). These areas could throw light on alternative designs of

educational software that could ®t into teachers' practices and respond better to their

requirements.

Teaching material=resources provider

In this group are those packages that serve as a resource to carry out a speci®c task. The

software here does not include an explicit learning or teaching strategy, but it may help to

perform learning and=or teaching processes.

The focus of learning could be on the student-software interaction or on the activity

organised by the teacher. The computer is conceptualised as a special tool for performing

an activity or as a powerful book-like resource.

There are many studies that report the use in schools of `traditional' software of this type

(word processors, data bases, spreadsheets, encyclopaedias, etc.). This software has

generally been designed to be used in other environments (industry, administration,

library, home, etc.), therefore its introduction into classroom settings is unlikely to

emphasise cognitive and pedagogical aspects (Squires 1996). Teachers who use this

kind of software often advocate `vocational' arguments, arguing that students need to

be prepared to use this kind of software when they enter into the job market (Squires

1996).

112 HINOSTROZA ET AL

Discussion

Leaving aside the use of software as a teaching material=resources provider, it was argued

that educational software design follows one of two approaches:

� Designing cognitive tools: here the authors are trying to build software that implements

some learning, cognitive or instructional theory. In doing so they give the computer a

high degree of responsibility for the learning outcomes.

� Designing professional tools for teaching: here the authors are trying to ®nd out ways in

which a computer could be used as part of the teaching process. They include a more

systemic view of the process of teaching and learning, rather than a particular

conception of learning with or around the computer.

Despite all the efforts of designers using the ®rst approach, and all the designer's

intentions, research shows that the software most frequently used in school is based on drill

and practice activities (Evans-Andris 1995, Cuban 1997). In turning to look at the second

approach, we are back to the key question of de®ning the role of the computer in teaching.

Despite high expectations about the use of computers in education, research has shown

that in this ®eld the role of the technology remains controversial (Lowther and Sullivan

1994) and its effects are inconclusive (Johnson et al., 1994). In trying to explain this

situation there are two main arguments, the ®rst is that the teacher should be more

technology literate in order to master the technology, and the second refers to the lack of

understanding of the software designers about the teaching=learning process.

In the ®rst group, some authors complain about the capacity of the teachers to

understand and=or adapt pieces of software to their classroom activities. Handler (1993)

and Winship (1989) complain about a lack of appropriate training and support for teachers

who want to use this technology.

In discussing educational software, Winship (1989) comments that:

� teachers ®nd it very dif®cult to identify software that they believe will be useful in their

own teaching.

� much of the existing software is dif®cult to integrate into teaching because it is either

too easy, too hard or it takes too long before useful results are produced.

� often the teachers must put in a great deal of preparation time before the software can be

used in the classroom.

There seems to be a discrepancy between what is being offered today as good

educational software, what teachers really do with software in the schools and what

teachers' expectations are of what could be done with it. In a teacher's words:

`̀ Given that I am expected to maintain order and get students to learn essential skills,

knowledge, and values, how will these machines help or hinder my mission?''

(Cuban 1997 p. xii)

DEVELOPING EDUCATIONAL SOFTWARE 113

So, one general critique of the design and implementation of educational software to

date is that there is a lack of understanding of what is happening in the classroom and of

the discourse of the teachers and their circumstances. Mercer and Scrimshaw (1993) and

Olson (1988) argue that we know too little about computer activities in the classroom.

Crook (1991) and Koedinger & Anderson (1993) argue that we should understand the

discourse of teaching and the instructional context. Winograd and Flores (1986) talk about

the general issue of understanding the domain of action of the user, in this case the teacher

and the pupil. Reusser (1993) speaks about the pedagogical and didactic philosophy that a

software design should incorporate and the importance of the learning and teaching

activities that take place in the `behavioural setting' of schooling.

School software should be designed to be used in the school, for purposes and needs

that are present in the school. The implication of this de®nition is that to design a piece of

school software, ®rst it is necessary to know the needs of the school and, from this starting

point, to design a piece of software to help to satisfy those needs. It implies not imposing

preconceived software designs in order to improve teachers' professional activities, but

basing designs upon the actual practices of the teachers, enabling them to perform those

tasks more effectively.

We have presented four themes:

� Software design±where we concluded that designing software should incorporate

elements from the reality in which it will be used. At present there is a lack of

understanding of the role of the teachers and about the activities that occur with and

around the software that is being used in the schools.

� Software development±where we presented arguments for a modi®cation of traditional

software development methods to incorporate techniques such as ethnography into the

early stages of the process. This is in order to understand the professional activity of the

software user (the teacher) and use this understanding to design appropriate software.

� Software evaluation±where we presented arguments for the incorporation of the contexts

of use as a new dimension for evaluation of educational software, transforming it into a

process that could be understood as qualitative research. This highlights the situated

nature of software use.

� Educational innovation±which we presented as a phenomenon that is highly correlated

with the introduction of IT into schools. In this sense, the role of computers as a support

tool for such a process rather than as a catalyst in it was emphasised. Therefore, and in

order to be able to play this role, it is essential to understand the contextual setting in

which it will be used.

These themes all point to the importance of knowing and considering the reality of use

in order to design, develop and evaluate educational software that could be used to support

an innovation process which engages the teacher and the school, that is, as professional

tools for teachers.

114 HINOSTROZA ET AL

Acknowledgements

This work has been carried out thanks to the support of Fondecyt, project number

1960854; the British Council; the H. E. L. project `Advanced Computer-based Technol-

ogies for Teaching and Learning (ACOTEL)' and the Chilean Ministry of Education,

through the MECE programme's Enlaces Project.

Notes

1 All names of companies are respective Trade Marks

References

Anderson, A. et al. (1993) Software style and interaction around the microcomputer. Computers and Education,

20, pp. 235±250.

Berliner, D. C. (1995) Teacher expertise. In Anderson, L.W. (ed.) International Encyclopedia of Teaching and

Teacher Education, pp. 46±52. Oxford: Pergamon.

Boehm, B. W. (1998) A spiral model of software development and enhancement. IEEE Computer, May 1998, pp.

61±72.

Bruce, B. C. (1996) Educational Technology: Tools for Inquiry, Communication, Construction, and Expression.

On-line at www:http://www.ed.uiuc.edu/facstaff/chip/taxonomy/.

Chandler, D. (1984) Young Learners and the Microcomputer. Milton Keynes: Open University.

Char, C. and Hawkins, J. (1986) Charting the course: involving teachers in the formative research and design of

the voyage of the mimi. In Pea, R. D. and Sheingold, K. (eds.) Mirrors of Mind: Patterns of Experience in

Educational Computing, pp. 211±241. Norwood: Abelex Pub. Co.

Crook, C. (1994) Computers and the Collaborative Experience of Learning. London: Routledge.

Crook, C. (1991) Computers in the zone of proximal development: implications for evaluation. Computers in

Education, 17, pp. 81±91.

Cuban, L. (1997) Foreword. In Sandholtz, H.J. Ringstaff, C. and Dwyer, D.C. (eds.) Teaching with Technology:

Creating Student Centered Classrooms. New York: Teachers College Press.

diSessa, A. A. Hoyles, C. and Noss, R. (eds.) (1995) Computers and Exploratory Learning. NATO ASI Series F

Subseries Advanced Educational Technology. London: Springer.

Dockterman, D.A. (ed.) (1991) Great Teaching in the One Computer Classroom. Tom Snyder Productions.

Eraut, M. (1994) Developing Professional Knowledge and Competence. London: The Falmer Press.

Evans-Andris, M. (1995) An examination of computing styles among teachers in elementary schools. Educational

Technology Research and Development, 43, pp. 15±31.

Fatouros, C. Downes, T. and Blackwell, S. (1994) In Control: Young Children Learning with Computers.

Wentworth Falls: Social Science Press.

Fitzgerald, G. E. Bauder, D. K. and Werner, J. G. (1992) Authoring CAI lessons: teachers as developers. Teaching

Exceptional Children, Winter, pp. 15±21.

Fraser, R. et al. (1991) Learning activities and classroom roles with and without the microcomputer. In Boyd-

Barret, O. and Scanlon, E. (eds.), Computers and Learning. Wokingham: Addison Wesley & Open University.

Fullan, M. (1982) The Meaning of Educational Change. Columbia University: Teachers College Press.

Grossman, P. L. (1995) Teachers' knowledge. In Anderson, L.W. (ed.) International Encyclopedia of Teaching

and Teacher Education, pp. 20±24. Oxford: Pergamon.

Grunberg, J. and Summers, M. (1992) Computer innovation in schools: a review of selected research literature.

Journal of Information Technology for Teacher Education, 1, pp. 255±276.

DEVELOPING EDUCATIONAL SOFTWARE 115

Handler, M. (1993) Preparing new teachers to use computer technology: perceptions and suggestions for teacher

educators. Computers and Education, 20, pp. 147±156.

Hawkins, J. and Kurland M. D. (1986) Informing the design of software through context-based research. In Pea,

R. D. and Sheingold, K. (eds.) Mirrors of Mind: Patterns of Experience in Educational Computing, pp. 258±

272. Norwood: Abelex Pub. Co.

Hoyles, C. Noss, R. and Sutherland, R. (1991) Final Report of the Microworlds Project. University of London:

Institute of Education.

Hughes, J. et al. (1995) The role of ethnography in interactive systems design. Interactions 2, pp. 56±65.

Johnson, D. C. Cox, M. and Watson D. M. (1994) Evaluating the impact of IT on pupils' achievements. Journal of

Computer Assisted Learning, 10, pp. 138±156.

Jones, V. (1996) Classroom management. In Sikula, J. (ed.) Handbook of Research on Teacher Education, pp.

503±521. New York: Macmillan.

Kemmis, S. Atkin, R. and Wright, E. (1997) How Do Students Learn? University of East Anglia: Centre for

Applied Research in Education.

Koedinger, K. R. and Anderson, J. R. (1993) Reifying implicit planning in geometry: guidelines for model-based

intelligent tutoring systems design. In Lajoie S. P. and Derry S. J. (eds.) Computers as Cognitive Tools, pp. 15±

45. Hillsdale: Lawrence Eribaum.

Laborde, J.-M. (ed.) (1995) Intelligent Environments: the Case of Geometry. NATO ASI Series F Subseries

Advanced Educational Technology. London: Springer.

Laurillard, D. (1990) Computers and the emancipation of students: giving control to the learner. In Boyd-Barret O.

and Scanlon E. (eds.) Computers and Learning, pp. 64±80. Wolinkham: Addison Wesley & The Open

University.

Laurillard, D. (1993) Rethinking University Teaching: a Framework for the Effective Use of Educational

Technology. London: Routledge.

Open Learning Technology Corporation Limited (1995) Learning with Software. On-line at www: http://

gwis2.circ.gwu.edu:80/~kearsley/.

Lowther, D. and Sullivan, H. J. (1994) Teacher and technologist beliefs about educational technology. Educational

Technology Research and Development, 42, pp. 73±87.

Marton, F. (1994) On the structure of teacher's awareness. In Carlagen, I. Handal, G. and Vaage, S. (eds.)

Teachers' Minds and Actions: Research on Teachers' Thinking and Practice, pp. 28±42. London: The Falmer

Press.

McConnell, D. (1994) Implementing Computer Supported Cooperative Learning. London: Kogan Page.

Mellar, H. et al. (eds.) (1994) Learning with Arti®cial Worlds: Computer Based Modelling in the Curriculum.

London: The Falmer Press.

Mercer, N. and Scrimshaw, P. (1993) Researching the electronic classroom. In Scrimshaw P. (ed.) Language,

Classrooms and Computers, pp. 184±191. London: Routledge.

Mercer, N. (1993) Computer-based activities in classroom contexts. In Scrimshaw P. (ed.) Language, Classrooms

and Computers, pp. 27±39. London, Routledge.

Olson, J. (1988) Schoolworlds=Microworlds: Computers and the Culture of the Classroom. Oxford: Pergamon

Press.

Potts, C. (1993) Software engineering research revisited. IEEE Software, September, pp. 19±28.

Reiser, R. A. and Dick, W. (1990) Evaluating instructional software. Educational Technology Research and

Development, 38, pp. 43±50.

Reusser, K. (1993) Tutoring systems and pedagogical theory: representation tools for understanding, planning and

re¯ection in problem solving. In Lajoie, S. P. and Derry, S. J. (eds.) Computers as Cognitive Tools, pp. 143±

177. Hillsdale: Lawrence Erlbaum.

Sandholtz, H. J. Ringstaff, C. and Dwyer, D. C. (1997) Teaching with Technology: Creating Student Centered

Classrooms. New York: Teachers College Press.

Schwartz, J. L. Yerushalmy, M. and Wilson, B. (eds.) (1993) The Geometric Supposer: What is the Case of?

London: Erlbaum.

Soloway, E. and Pryor, A. (1996) Using computational media to facilitate learning. Communications of the ACM,

39, pp. 83±109.

116 HINOSTROZA ET AL

Sommerville, I. (1989) Software Engineering. 3rd ed. Addison Wesley.

Squires, D. and McDougall A. (1994) Choosing and Using Educational Software: a Teachers' Guide. London:

The Falmer Press.

Squires, D. (1996) Production of educational software. In Plomp, T. and Ely, D. E. (eds.) International

Encyclopedia of Educational Technology, pp. 217±221. Oxford: Elsevier Science±Pelgrum.

Taylor, R. P. (ed.) (1980) The Computer in the School: Tutor, Tool, Tutee. New York: Teachers College Press.

Tolhurst, D. (1992) A checklist for evaluating content-based hypertext computer software. Educational

Technology, March, pp. 17±21.

Watson, L. (1993) Appropriate tools? IT in the primary classroom. In Beynon, J. and Mackay, H. (eds.)

Computers into Classroom: More Questions than Answers, pp. 78±91. London: The Falmer Press.

Winograd, T. and Flores, F. (1986) Understanding Computers and Cognition: a New Foundation for Design,

Reading, Massachusetts: Addison-Wesley.

Winograd, T. (1995) From programming environments to environments for design. Communications of the ACM,

38, pp. 65±74.

Winship, J. A. (1989) Information Technology in Education: the Quest for Quality Software. Paris: Organisation

for Economic Co-operation and Development.

Zahner, J.E. et al. (1992) Evaluating instructional software: a simpli®ed model. Educational Technology Research

and Development, 40, pp. 55±62.

DEVELOPING EDUCATIONAL SOFTWARE 117

